Computational Trust Models and Machine Learning
Book Details:
Publisher: | Chapman and Hall/CRC |
Series: |
CRC Press , Learning
|
Author: | Xin Liu |
Edition: | 1 |
ISBN-10: | 1482226669 |
ISBN-13: | 9781482226669 |
Pages: | 232 |
Published: | Nov 14 2014 |
Posted: | Apr 16 2016 |
Language: | English |
Book format: | PDF |
Book size: | 2.17 MB |
Book Description:
Computational Trust Models and Machine Learning provides a detailed introduction to the concept of trust and its application in various computer science areas, including multi-agent systems, online social networks, and communication systems. Identifying trust modeling challenges that cannot be addressed by traditional approaches, this book: Explains how reputation-based systems are used to determine trust in diverse online communities Describes how machine learning techniques are employed to build robust reputation systems Explores two distinctive approaches to determining credibility of resourcesone where the human role is implicit, and one that leverages human input explicitly Shows how decision support can be facilitated by computational trust models Discusses collaborative filtering-based trust aware recommendation systems Defines a framework for translating a trust modeling problem into a learning problem Investigates the objectivity of human feedback, emphasizing the need to filter out outlying opinions Computational Trust Models and Machine Learning effectively demonstrates how novel machine learning techniques can improve the accuracy of trust assessment.
With the rapid advancement of information discovery techniques, machine learning and data mining continue to play a significant role in cybersecurity. Although several conferences, workshops, and journals focus on the fragmented research topics in this area, there has been no single interdisciplinary resource on past and current works and possible paths for future research in this area. This book fills this need. From basic concepts in machine learning and data mining to advanced problems in the machine learning domain, Data Mining and Machine Learning in Cybersecurity provides a unified reference for specific machine learning solutions to cybersecurity problems. It supplies a foundation in cybersecurity fundamentals and surveys contemporary challen...
Machine learning methods extract value from vast data sets quickly and with modest resources. They are established tools in a wide range of industrial applications, including search engines, DNA sequencing, stock market analysis, and robot locomotion, and their use is spreading rapidly. People who know the methods have their choice of rewarding jobs. This hands-on text opens these opportunities to computer science students with modest mathematical backgrounds. It is designed for final-year undergraduates and master's students with limited background in linear algebra and calculus. Comprehensive and coherent, it develops everything from basic reasoning to advanced techniques within the framework of graphical models. Students learn more than a menu of ...
This book adopts a detailed and methodological algorithmic approach to explain the concepts of pattern recognition. While the text provides a systematic account of its major topics such as pattern representation and nearest neighbour based classifiers, current topics - neural networks, support vector machines and decision trees - attributed to the recent vast progress in this field are also dealt with. Introduction to Pattern Recognition and Machine Learning will equip readers, especially senior computer science undergraduates, with a deeper understanding of the subject matter....
2007 - 2021 © eBooks-IT.org